Efficient Systolic Designs for 1- and 2-Dimensional DFT of General Transform-Lengths for High-Speed Wireless Communication Applications

نویسندگان

  • Pramod Kumar Meher
  • Jagdish Chandra Patra
  • A. Prasad Vinod
چکیده

In wireless communication, multiple receive-antennas are used with orthogonal frequency division multiplexing (OFDM) to improve the system capacity and performance. The discrete Fourier transform (DFT) plays an important part in such a system since the DFTs are required to be performed for the output of all those antennas separately. This paper presents area-time efficient systolic structures for one-dimensional (1-D) and two-dimensional (2-D) DFTs of general lengths. A low-complexity recursive algorithm based on Clenshaw’s recurrence relation is formulated for the computation of 1-D DFT. The proposed algorithm is used further to derive a linear systolic array for the DFT. The concurrency of computation has been enhanced and complexity is minimized by the proposed algorithm where an N−point DFT is computed via four inner-products of real-valued data of length ≈ (N/2). The proposed 1-D structure offers significantly lower latency, twice the throughput, and involves nearly the same area-time complexity of the corresponding existing structures. The proposed algorithm for 1-D DFT is extended further to obtain a 2-D systolic structure for the 2-D DFT without involving any transposition operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triple-Matrix Product-Based 2D Systolic Implementation of Discrete Fourier Transform

Realization of N-point Discrete Fourier Transform (DFT) using one-dimensional or two-dimensional systolic array structures have been developed for power of two DFT sizes. DFT algorithm, which can be represented as a triple -matrix product, can be realized by decomposing N into smaller lengths. Triple matrix product form of representation enables to map the Npoint DFT on a 2-D systolic array. In...

متن کامل

An Efficient Parallel Adder Based Design for One Dimensional Discrete Fourier Transform

This paper presents a new efficient parallel adder (PA) based design for the one-dimensional (1-D) anylength discrete Fourier transform (DFT). Using the Chirp-Z transform, the author develops an algorithm which can formulate the 1-D any-length DFT as cyclic convolutions. This algorithm exhibits higher flexibility in the transform length as compared with the existing approaches to prime length D...

متن کامل

Design and Implementation of a High Speed Systolic Serial Multiplier and Squarer for Long Unsigned Integer Using VHDL

A systolic serial multiplier for unsigned numbers is presented which operates without zero words inserted between successive data words, outputs the full product and has only one clock cycle latency. The multiplier is based on a modified serial/parallel scheme with two adjacent multiplier cells. Systolic concept is a well-known means of intensive computational task through replication of func...

متن کامل

Design and Implementation of a High Speed Systolic Serial Multiplier and Squarer for Long Unsigned Integer Using VHDL

A systolic serial multiplier for unsigned numbers is presented which operates without zero words inserted between successive data words, outputs the full product and has only one clock cycle latency. &#10The multiplier is based on a modified serial/parallel scheme with two adjacent multiplier cells. Systolic concept is a well-known means of intensive computational task through replication of fu...

متن کامل

The Efficient Memory - Based VLSI Array Designs For DFT and DCT

In this paper, the efficient memory-based VLSI arrays and the accompanied new design approach for the discrete Fourier transform (DFT) and discrete cosine transform (DCT) are presented. The DFT and DCT are formulated as cyclic convolution forms and mapped into linear arrays which characterize small numbers of 1 / 0 channels and low 1 / 0 bandwidth. Since the multipliers consume much hardware ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing Systems

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2010